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The Blume-Emery-Griffiths spin glass is studied by renormalization-group theory in d=3. The boundary
between the ferromagnetic and paramagnetic phases has first-order and two types of second-order segments.
This topology includes an inverted tricritical point, first-order transitions replacing second-order transitions as
temperature is lowered. The phase diagrams show disconnected spin-glass regions, spin-glass and paramag-
netic reentrances, and complete reentrance, where the spin-glass phase replaces the ferromagnet as temperature
is lowered for all chemical potentials.
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The Blume-Emery-Griffiths �BEG� model �1,2� is the
simplest system for the study of the various meetings of first-
and second-order phase boundaries between ordered and dis-
ordered phases, in a plethora of phase diagram topologies
�3�. In these diagrams, the second-order phase transitions are
dominated by thermal fluctuations and occur at high tem-
peratures. The first-order phase transitions evolve, to finite
temperatures, from zero-temperature ground-state energy
crossings and occur at low temperatures. In a well-known
phase diagram topology, a tricritical point separates the high-
temperature second-order boundary and the low-temperature
first-order boundary. The BEG model has been used to de-
scribe 3He-4He mixtures �1�, solid-liquid-gas systems �4�,
multicomponent fluid and liquid-crystal mixtures �5�, micro-
emulsions �6�, semiconductor alloys �7,8�, and electronic
conduction systems �9�.

The inclusion of frozen disorder �quenched randomness�
to these systems should yield new phase diagrams, as is in-
deed seen in our current work. We find that a temperature
sequence of transitions that is reverse to the above can occur
with the inclusion of quenched randomness. Thus, an in-
verted tricritical point is obtained, separating a high-
temperature first-order boundary and a low-temperature
second-order boundary. Since the BEG model is the generic
model for tricriticality, we believe that the quenched random-
ness effect of inverted tricriticality should be quite generally
applicable. With frustrated quenched randomness �10–13�,
the spin-glass phase appears within the Blume-Emery-
Griffiths global phase diagram �Fig. 1�. Thus, a new spin-
glass phase diagram topology is found, in which discon-
nected spin-glass regions occur close to the ferromagnetic
and antiferromagnetic phases, but are separated by a para-
magnetic gap. No experimental spin-glass phase diagram has
to our knowledge as yet yielded disconnected spin-glass re-
gions. However, if the global phase diagram of a physical
realization of the BEG spin glass is fully explored, these
disconnected regions should be found.

We have studied, in spatial dimension d=3, the model
with Hamiltonian

− �H = �
�ij�

�Jijsisj + Ksi
2sj

2 − ��si
2 + sj

2�� , �1�

where si=0, �1 at each site i of the lattice and �ij� indicates
summation over nearest-neighbor pairs of sites. The spin-
glass type of quenched randomness is given by each local Jij
being ferromagnetic with the value +J with probability 1
− p and antiferromagnetic with the value −J with probability
p. Under the scale change induced by renormalization-group
transformation, all renormalized interactions become
quenched random and the more general Hamiltonian
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FIG. 1. �Color� Our calculated global phase diagram for K=0.
The ferromagnetic phase is bounded by a first-order surface �red�
close to p=0, which recedes along the full line on the surface from
a new second-order transition �purple� induced by randomness and
controlled by a strong-coupling fixed distribution. At the dashed
line, an ordinary second-order transition �blue� takes over. The tran-
sitions from the spin-glass phase, to the paramagnetic �black� or
ferromagnetic �green� phase, are second order. The system being
symmetric about p=0.5, the antiferromagnetic sector is not shown.
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− �H = �
�ij�

�Jijsisj + Kijsi
2sj

2 − �ij�si
2 + sj

2� − �ij
† �si

2 − sj
2��

�2�

must be considered. The renormalization-group flows are in
terms of the joint quenched probability distribution
P�Jij ,Kij ,�ij ,�ij

† �, which is renormalized through the convo-
lution �14�

P��Ki�j�
� � =� 	


ij

i�j�

dKijP�Kij���„Ki�j�
� − R��Kij�… , �3�

where primes refer to the renormalized system, Kij
��Jij ,Kij ,�ij ,�ij

† �, and R�Kij� is the local recursion relation
through which 108 unrenormalized local interactions in �Kij
determine the four renormalized local interactions in Ki�j�

� .
The local recursion relation R�Kij� is effected by a mixed
Migdal-Kadanoff procedure �15� with d=3 and length rescal-
ing factor b=3 necessary for the equal a priori treatment of
ferromagnetism and antiferromagnetism. Thus, our treatment
is approximate for the cubic lattice and exact for the hierar-

chical lattice �15–24� shown in Fig. 2. This hierarchical lat-
tice is known to give very accurate results for the critical
temperatures of the d=3 isotropic and anisotropic Ising mod-
els on the cubic lattice �15�. Furthermore, in general, exact
calculations for hierarchical lattices have been seen to con-
stitute very good approximations for cubic lattices
�14,24–27�.

The probability distribution P�Jij ,Kij ,�ij ,�ij
† � is repre-

sented by histograms lodged on a four-dimensional interac-
tion space �Jij ,Kij ,�ij ,�ij

† �. Equation �3� is effected by eight
pairwise convolutions, which are either bond moving or
decimation in the appropriate sequence, between intermedi-
ate distributions. The number of histograms rapidly grows
from the starting two described after Eq. �1�. Thus, for cal-
culational purposes, before each pairwise convolution, the
histograms are combined by using a binning procedure, so
that our results are obtained by the renormalization-group
flows of 22 500 histograms.

Tricritical phase diagram cross sections of the purely fer-
romagnetic system for different K /J values are shown in Fig.

FIG. 2. The d=3 hierarchical lattice for which our calculation is
exact is constructed by the repeated imbedding of the graph as
shown in this figure. This hierarchical lattice gives very accurate
results for the critical temperatures of the d=3 isotropic and aniso-
tropic Ising models on the cubic lattice �15�.
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FIG. 3. �Color online� Tricritical phase diagram cross-sections
of the purely ferromagnetic system for the K /J values indicated on
the figure, shown consecutively from the innermost curve for K /J
=0. First- and second-order transitions are shown by dotted and full
lines, meeting at a tricritical point. In these systems, with no
quenched randomness, the standard tricritical topology occurs, with
the second-order boundary at high temperature and the first-order
boundary at low temperature.
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FIG. 4. �Color online� Blume-Emery-Griffiths spin-glass phase
diagrams: Constant � /J cross sections of the global phase diagram
in Fig. 1. The outermost cross section has � /J=−�, meaning no
si=0 states. The successive cross sections, going inwards from the
outermost cross section, are for the successively higher values of
� /J indicated on the figure. Thus, annealed vacancies si=0 are
introduced in these cross sections with successively higher values
of � /J, making all ordered phases recede. The dotted and full lines
are, respectively, first- and second-order phase boundaries. The
dashed lines are strong-coupling second-order phase boundaries in-
duced by quenched randomness. The inverted tricritical topology is
seen between the dotted and dashed lines, with the first-order tran-
sitions occurring at high temperature and the second-order transi-
tions occurring at low temperature, on each side of the tricritical
point. A new spin-glass phase diagram topology is obtained for
� /J=0.35, in which the spin-glass phase occurs close to the ferro-
magnetic �and, symmetrically, antiferromagnetic, not shown here�
phase, but yields to the paramagnetic phase as p is increased to-
wards 0.5. The spin-glass phase disappears at � /J=0.37. The in-
sets, with expanded scales, clearly show the ferromagnetic to para-
magnetic phase reentrance and the ferromagnetic to spin-glass
phase reentrance.
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3. These are standard tricritical phase diagrams, in the ab-
sence of quenched randomness, with the tricritical point
separating the second-order transitions at high temperature
and the first-order transitions at low temperature. The
humped boundary, occurring in mean-field theory but not in
the d=2 system �2�, is thus found to occur in the d=3 sys-
tem.

Our calculated global phase diagram for the BEG spin-
glass system is in Fig. 1 for K=0. The ferromagnetic phase is
bounded by a first-order surface close to p=0, which recedes
along the full line on the surface from a new second-order
transition induced by randomness and controlled by a strong-
coupling fixed distribution. At the dashed line, an ordinary
second-order transition takes over. The full line is thus a line
of random-bond tricritical points. The dashed line is a line of
special critical points around which universality is violated,
since the second-order phase transitions on each side of this
line have different critical exponents �14�. These two lines
meet at the nonrandom �p=0� tricitical point. The transitions
from the spin-glass phase, to the paramagnetic or ferromag-
netic phase, are second order.

Cross sections of this global phase diagram for constant

chemical potential � /J of the non-magnetic state are in Fig.
4. The outermost cross section has � /J=−�, meaning no si
=0 states, and therefore is the phase diagram of the spin-1 /2
Ising spin glass, showing as temperature is lowered the
paramagnet-ferromagnet-spin-glass reentrance �25,26�. The
annealed vacancies, namely the nonmagnetic states si=0, are
introduced in cross sections with successively higher values
of � /J. For � /J greater than the nonrandom tricritical value
of � /J=0.192, first-order transitions between the ferromag-
netic and paramagnetic phases are introduced from the low
randomness side, but are converted to the strong-coupling
second-order transition at a threshold value of randomness p.
This constitutes an inverted tricritical point, since the phase
boundary is converted from first order to second order as
temperature is lowered, contrary to the ordinary tricritical
points �as seen, for example, in Fig. 3�. The above results are
consistent with the general prediction that, in d=3, quenched
randomness converts first-order boundaries into second or-
der, at a threshold amount of randomness �27�. �In d=2, this
conversion is predicted to happen with infinitesimal
quenched randomness �27,28�.� The randomness threshold in
d=3 is of course higher for stronger first-order transitions. In
the current system, increased frustrating quenched random-
ness has two parallel effects, namely driving the phase tran-
sition to lower temperature and reaching the threshold for the
conversion to second order, which explains the calculated
results of inverted tricriticality. �With nonfrustrating
quenched randomness, on the other hand, the transition can
actually be driven to higher temperature, while the conver-
sion to second order still happens �29�.�

As the annealed vacancies si=0 are increased, at � /J
�0.34, of the second-order transitions between the ferro-
magnetic and paramagnetic phases, only the strong-coupling
transition remains. At � /J�0.42, the strong-coupling
second-order transition also disappears, leaving only first-
order transitions between the ferromagnetic and paramag-
netic phases. Also as the annealed vacancies are increased,
all ordered phases recede. In this process, first the spin-glass
phase disappears, at � /J=0.37, which is understandable,
since it is tenuously ordered due to frustration. The new,
disconnected spin-glass phase diagram topology is obtained
in this neighborhood, e.g., for � /J=0.35 as shown in Fig. 4,
in which the spin-glass phase occurs close to the ferromag-
netic �and, symmetrically, antiferromagnetic, not shown in
the figures� phase, but yields to the paramagnetic phase as p
is increased towards 0.5. The disconnected spin-glass phase
diagrams occur in a very narrow portion of the global phase
diagram.

The paramagnetic-ferromagnetic-spin-glass reentrances,
as temperature is lowered, of the Blume-Emery-Griffiths
spin-glass cross sections fall on the same reentrant second-
order boundary, as seen in Fig. 4. As seen for � /J=0.45 and
0.48 in this figure, before disappearing at � /J=0.5, the fer-
romagnetic phase exhibits paramagnetic-ferromagnetic-
paramagnetic reentrance as temperature is lowered.

Constant p cross sections of the global phase diagram in
Fig. 1 are shown in Fig. 5. The outermost curve corresponds
to the pure Blume-Emery-Griffiths model with no quenched
randomness �p=0�. As spin-glass quenched randomness is
introduced with increasing values of p, we see that the first-
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FIG. 5. �Color online� Spin-glass Blume-Emery-Griffiths phase
diagrams: Constant p cross sections of the global phase diagram in
Fig. 1. The dotted and full lines are, respectively, first- and second-
order phase boundaries. The dashed lines are strong-coupling
second-order phase boundaries induced by quenched randomness.
The outermost curve in �a� corresponds to the pure Blume-Emery-
Griffiths model with no quenched randomness �p=0�. The succes-
sive cross sections in �a�, going inwards from the outermost cross
section, are for the successively higher values of p indicated on the
figure. As spin-glass quenched randomness is introduced with in-
creasing values of p, ordered phases and first-order phase transi-
tions recede.
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order boundary recedes to the strong-coupling second-order
boundary, while the ordinary second-order boundary also ex-
pands. At p=0.18, the first-order transition completely disap-
pears. At p=0.241, the spin-glass phase appears below the
ferromagnetic phase, reflecting complete reentrance. At p
=0.249, the spin-glass phase completely replaces the ferro-
magnetic phase as the ordered phase, which is enveloped by
second-order transitions only. Thus, for 0.241	 p	0.759,
the second-order boundary between the spin-glass and para-
magnetic phases reaches zero temperature.

In the results above, the phase diagrams are determined
by the basins of attraction of the renormalization-group
sinks, namely the completely stable fixed points and fixed
distributions: Each basin is a thermodynamic phase. The na-
ture of the phase transitions is determined by analysis of the
unstable fixed points and fixed distributions to which the
phase diagram points of these transitions flow. Figure 6
shows the unstable fixed distributions of �a� the quenched

randomness-induced second-order transitions between the
ferromagnetic and paramagnetic phases, �b� the first-order
transitions between the ferromagnetic and paramagnetic
phases, �c� the second-order transitions between the ferro-
magnetic and spin-glass phases, and �d� the second-order
transitions between the spin-glass and paramagnetic phases.
The �totally stable� sink fixed distribution of the spin-glass
phase is also shown, in �e�. The eigenvalue exponent of the
unstable fixed distribution controlling �b� the first-order tran-
sitions between the ferromagnetic and paramagnetic phases
is y=3=d, as is required for first-order transitions �30�. The
eigenvalue exponents of the other unstable fixed distribu-
tions, �a�,�c�,�d�, are y	d as is required for second-order
transitions.
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